html updates
[clinton/website/site/unknownlamer.org.git] / Metaobject Protocols.html
1 <?xml version="1.0" encoding="utf-8" ?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml">
5 <head>
6 <title>Metaobject Protocols</title>
7 <meta name="generator" content="muse.el" />
8 <meta http-equiv="Content-Type"
9 content="text/html; charset=utf-8" />
10 <link href="http://feeds.unknownlamer.org/rss/site-updates"
11 rel="alternate" type="application/rss+xml" title="Updates Feed" />
12
13 <link rel="stylesheet" href="default.css" media="screen" />
14 </head>
15 <body>
16 <h1>Metaobject Protocols</h1>
17 <div class="contents">
18 <dl>
19 <dt>
20 <a href="#sec1">Background</a>
21 </dt>
22 <dd>
23 <dl>
24 <dt>
25 <a href="#sec2">Object Protocols</a>
26 </dt>
27 <dt>
28 <a href="#sec3">CLOS Way of OO</a>
29 </dt>
30 <dd>
31 <dl>
32 <dt>
33 <a href="#sec4">Classes for Scratch Data and Types</a>
34 </dt>
35 <dt>
36 <a href="#sec5">Generics with Methods that Implement Protocols</a>
37 </dt>
38 </dl>
39 </dd>
40 </dl>
41 </dd>
42 <dt>
43 <a href="#sec6">Limitations of Default Language Behavior</a>
44 </dt>
45 <dd>
46 <dl>
47 <dt>
48 <a href="#sec7">Slot Storage</a>
49 </dt>
50 <dt>
51 <a href="#sec8">Design Patterns</a>
52 </dt>
53 </dl>
54 </dd>
55 <dt>
56 <a href="#sec9">Metasoftware</a>
57 </dt>
58 <dd>
59 <dl>
60 <dt>
61 <a href="#sec10">Runtime Generated Classes</a>
62 </dt>
63 <dt>
64 <a href="#sec11">Object Inspection</a>
65 </dt>
66 </dl>
67 </dd>
68 <dt>
69 <a href="#sec12">Metaobject Protocols</a>
70 </dt>
71 <dd>
72 <dl>
73 <dt>
74 <a href="#sec13">Limited/Generalized Internals of the Implementation</a>
75 </dt>
76 <dt>
77 <a href="#sec14">Classes of MOPs</a>
78 </dt>
79 <dd>
80 <dl>
81 <dt>
82 <a href="#sec15">Reflective</a>
83 </dt>
84 <dt>
85 <a href="#sec16">Intercessory</a>
86 </dt>
87 </dl>
88 </dd>
89 <dt>
90 <a href="#sec17">Violation of Encapsulation?</a>
91 </dt>
92 </dl>
93 </dd>
94 <dt>
95 <a href="#sec18">MOP Design Principles</a>
96 </dt>
97 <dd>
98 <dl>
99 <dt>
100 <a href="#sec19">Layered Protocol</a>
101 </dt>
102 <dd>
103 <dl>
104 <dt>
105 <a href="#sec20">Top Level <strong>Must</strong> Call Lower Level Methods</a>
106 </dt>
107 <dt>
108 <a href="#sec21">Lower Level Methods are Easier to Customize</a>
109 </dt>
110 </dl>
111 </dd>
112 <dt>
113 <a href="#sec22">Functional Where Possible</a>
114 </dt>
115 <dd>
116 <dl>
117 <dt>
118 <a href="#sec23">Memoization</a>
119 </dt>
120 <dt>
121 <a href="#sec24">Constant Shared Return Values</a>
122 </dt>
123 </dl>
124 </dd>
125 <dt>
126 <a href="#sec25">Procedural Only Where Neccesary</a>
127 </dt>
128 <dt>
129 <a href="#sec26">Real World</a>
130 </dt>
131 <dd>
132 <dl>
133 <dt>
134 <a href="#sec27">UCW and Arnesi</a>
135 </dt>
136 <dt>
137 <a href="#sec28">CLSQL</a>
138 </dt>
139 <dt>
140 <a href="#sec29">Elephant</a>
141 </dt>
142 </dl>
143 </dd>
144 </dl>
145 </dd>
146 <dt>
147 <a href="#sec30">Sources &amp;amp; Further Reading</a>
148 </dt>
149 <dd>
150 <dl>
151 <dt>
152 <a href="#sec31">Sources</a>
153 </dt>
154 <dd>
155 <dl>
156 <dt>
157 <a href="#sec32">The Art of the Metaobject Protocol</a>
158 </dt>
159 <dt>
160 <a href="#sec33">CLOS MOP Specification</a>
161 </dt>
162 <dt>
163 <a href="#sec34">Metaobject Protocols: Why We Want Them and What Else They Can Do</a>
164 </dt>
165 <dt>
166 <a href="#sec35">Why Are Black Boxes so Hard to Reuse?</a>
167 </dt>
168 </dl>
169 </dd>
170 <dt>
171 <a href="#sec36">Further Reading</a>
172 </dt>
173 <dd>
174 <dl>
175 <dt>
176 <a href="#sec37">A Metaobject Protocol for C++</a>
177 </dt>
178 <dt>
179 <a href="#sec38">Open Implementations and Metaobject Protocols</a>
180 </dt>
181 </dl>
182 </dd>
183 </dl>
184 </dd>
185 </dl>
186 </div>
187
188
189 <!-- Page published by Emacs Muse begins here --><p>In Fall of 2006 I did a small project on Metaobject Protocols for my
190 CS 331 class. Here lie my notes which may perhaps be useful to
191 others. I hope to expand them into something more useful over time.</p>
192
193 <h2><a name="sec1" id="sec1"></a>
194 Background</h2>
195
196 <h3><a name="sec2" id="sec2"></a>
197 Object Protocols</h3>
198
199 <p class="first">An object protocol is a set of methods and specification of the
200 interactions between the methods which provide some generic behavior
201 (e.g. of a sequence) that are then implemented by classes which
202 conform to the protocol (e.g. a vector or list). In most object
203 systems a class contains both the methods which implement a protocol
204 and the data used by the implementation. The intent is to emulate
205 state machines which pass messages between each other.</p>
206
207
208 <h3><a name="sec3" id="sec3"></a>
209 CLOS Way of OO</h3>
210
211 <p class="first">The Common Lisp Object System (CLOS) is different. It separates
212 the data and method concepts into classes and generics. A class
213 contains data fields only, and a generic has methods specialized for
214 certain types attached to it. This seems a bit weird at first, but is
215 significantly more powerful as it encourages complete encapsulation
216 through its use of classes primarily for method specialization rather
217 than for state storage.</p>
218
219 <h4><a name="sec4" id="sec4"></a>
220 Classes for Scratch Data and Types</h4>
221
222 <p class="first">In CLOS classes store data in slots (which are the same as data
223 members). Encapsulation is not provided; any bit of code can use
224 <code>slot-value</code> to access or set the value of a slot. This may seem odd at
225 first, but encapsulation is of questionable importance as the slots
226 are meant only to be used by the protocol defined around the class.</p>
227
228 <p>Classes are defined with <code>defclass</code></p>
229
230 <pre class="src">
231 (<span style="color: #b9d3ee;">defclass</span> <span style="color: #98fb98;">name</span> (superclasses ...)
232 ((slot-name <span style="color: #b0c4de;">:accessor</span> slot-accessor ...)
233 ...)
234 (class-options ...))
235
236 (<span style="color: #b9d3ee;">defclass</span> <span style="color: #98fb98;">example</span> ()
237 ((foo <span style="color: #b0c4de;">:accessor</span> foo-of <span style="color: #b0c4de;">:initform</span> 5)))
238
239 (<span style="color: #b9d3ee;">defclass</span> <span style="color: #98fb98;">example-child</span> (example)
240 ((bar <span style="color: #b0c4de;">:accessor</span> bar-of <span style="color: #b0c4de;">:initform</span> (list 1 2 3))))
241 </pre>
242
243 <p>Slot defintions have several options; the above example shows only the
244 <code>:accessor</code> and <code>:initform</code> options which are the most commonly
245 used. <code>:accessor</code> generates an accessor for the slot (e.g. if you have
246 an instance of <code>example</code> you can <code>(setf (foo-of some-example-instance)
247 'some-value)</code> to set and <code>(foo-of some-example-instance)</code> to access the
248 value). <code>:initform</code> provides a default initial value for the slot as a
249 symbolic expression to be evaluated when an instance is created in the
250 lexical environment of the class definition.</p>
251
252
253 <h4><a name="sec5" id="sec5"></a>
254 Generics with Methods that Implement Protocols</h4>
255
256 <p class="first">Generics are like normal functions in Lisp, but they only provide a
257 lambda list (parameter list). Methods are added to the generic which
258 specialize on the types of their parameters and provide an
259 implementation. This allows writing rich layered protocols which can
260 enable selective modification of individual facets with minimal code.</p>
261
262 <pre class="src">
263 (<span style="color: #b9d3ee;">defgeneric</span> <span style="color: #87cefa;">generic</span> (parameters ...)
264 (options) ...)
265
266 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">generic-name</span> ((parameter type) parameter ...)
267 <span style="color: #b3b3b3;">"documentation string"</span>
268 body)
269
270 (<span style="color: #b9d3ee;">defgeneric</span> <span style="color: #87cefa;">foo</span> (bar baz quux)
271 (<span style="color: #b0c4de;">:documentation</span> <span style="color: #b3b3b3;">"Process the baz with the quux capacitor to make the
272 foo widget fly into the sky at warp speed"</span>))
273
274 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">foo</span> ((bar example) baz (quux capacitor))
275 (launch bar (process-with quux baz)))
276 </pre>
277
278 <p>A method lambda list differs from a normal lambda list only in that it
279 can specify the type of the parameter using the notation <code>(name type)</code>.
280 Note also that methods can specialize on the types of every
281 argument and not just the first one. This is quite powerful for
282 reasons outside of the scope of this presentation.</p>
283
284
285
286
287 <h2><a name="sec6" id="sec6"></a>
288 Limitations of Default Language Behavior</h2>
289
290 <p class="first">The behavior of a language is a compromise between many competing
291 issues that attempts to be as generally useful as possible so that
292 <em>most</em> applications will have no issue with the default behavior. There
293 are, however, certain applications that could be cleanly written with
294 minor modifications to the behavior of the language, but would be
295 impossible or quite difficult to write otherwise.</p>
296
297 <h3><a name="sec7" id="sec7"></a>
298 Slot Storage</h3>
299
300 <p class="first">Most languages choose to preallocate storage for all of the slots of
301 an instance. Now imagine a contact database that stores information
302 about people in slots of a class. There may be dozens of slots, but
303 often many of them will be left blank. If slot storage is preallocated
304 much memory will be wasted and the database may not be able to fit
305 into the memory of the hardware it must run on (perhaps for financial
306 reasons, huge datasets, etc.).</p>
307
308 <p>To save memory the author of the contact database must implement his
309 own system to store properties and allocate them lazily. This
310 represents a fair bit of effort, and would implement a system that
311 differed from the existing slot system of classes only regarding slot
312 storage.</p>
313
314 <p>It would be useful if there were a way to customize slot allocation in
315 instances. The customizations would be minor and require overriding
316 only the initial allocation behavior and the behavior of the first
317 assignment to the slot. It is a a trivial problem in a language that
318 allows customization of these behaviors.</p>
319
320
321 <h3><a name="sec8" id="sec8"></a>
322 Design Patterns</h3>
323
324 <p class="first">Design Patterns are generalized versions of common patterns found in
325 programs. Many of them are merely methods to get around deficiencies
326 in the language, and can be quite messy to implement in some
327 languages. Ideally a pattern would be subsumed by the language, but
328 real world contraints require language standards to remain fairly
329 static.</p>
330
331
332
333 <h2><a name="sec9" id="sec9"></a>
334 Metasoftware</h2>
335
336 <p class="first">Some types of programs could be written easily if the language were
337 customizable but are nearly impossible to write when it is not.</p>
338
339 <h3><a name="sec10" id="sec10"></a>
340 Runtime Generated Classes</h3>
341
342 <p class="first">Say you wanted to write a video game where players could create their
343 own objects, attach behaviors to the objects, and perhaps mix
344 different objects together to create new ones. When you abstract the
345 problem this looks just like an object system! Wouldn't it be nice if
346 your program could create new classes and methods on the fly portably?</p>
347
348
349 <h3><a name="sec11" id="sec11"></a>
350 Object Inspection</h3>
351
352 <p class="first">Imagine you were developing a complicated program with many different
353 objects that interacted in fairly complex ways. A tool to inspect the
354 structure of objects while debugging would be quite useful, but in a
355 traditional language would be impossible to implement portably. This
356 could force you to purchase a certain compiler implementation which
357 provided an inspector, and even then would likely not be customizable.</p>
358
359 <p>This problem can be generalized to apply to most debugging tools; it
360 would be useful to write such tools portably because users of the
361 <em>language</em> and not the <em>compiler</em> need to debug software. Sharing
362 infrastructure would result in better tools (more developers), and
363 save the man-years of wasted effort that comes with having to rewrite
364 unportable tools from scratch multiple times.</p>
365
366
367
368 <h2><a name="sec12" id="sec12"></a>
369 Metaobject Protocols</h2>
370
371 <h3><a name="sec13" id="sec13"></a>
372 Limited/Generalized Internals of the Implementation</h3>
373
374 <p class="first">A Metaobject Protocol (MOP) is a generalized and limited subset of the
375 underlying language implementation. It is limited to allow multiple
376 implementation strategies; this, along with careful design, is
377 essential because programming language research is ever advancing and
378 new techniques for creating more reliable and faster implementations
379 are still being discovered.</p>
380
381 <p>This subset of the implementation is exported as a set of methods on
382 metaobjects. Thus the language is implemented in itself. The system
383 can then be customized using the extension and overriding features of
384 the language itself.</p>
385
386
387 <h3><a name="sec14" id="sec14"></a>
388 Classes of MOPs</h3>
389
390 <h4><a name="sec15" id="sec15"></a>
391 Reflective</h4>
392
393 <p class="first">A reflective MOP provides an interface to information <em>about</em> the
394 running system. It exposes class relationships, the methods attached
395 to a generic, etc. A reflective MOP often provides some functionality
396 for creating new classes at runtime. Smalltalk was one of the first
397 languages to expose a reflective MOP.</p>
398
399 <h5>Example: Object Inspector</h5>
400
401 <pre class="src">
402 (<span style="color: #b9d3ee;">defgeneric</span> <span style="color: #87cefa;">example-inspect</span> (instance)
403 (<span style="color: #b0c4de;">:documentation</span> <span style="color: #b3b3b3;">"Simple object inspector using CLOS MOP"</span>))
404
405 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">example-inspect</span> ((instance t))
406 (format t <span style="color: #b3b3b3;">"Simple Object~% Value: ~S~%"</span> instance))
407
408 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">example-inspect</span> ((instance standard-object))
409 (<span style="color: #b9d3ee;">let</span> ((class (class-of instance)))
410 (format t <span style="color: #b3b3b3;">"Class: ~S, Superclasses: ~S~%"</span>
411 (class-name class)
412 (mapcar #'class-name
413 (class-precedence-list class)))
414 (<span style="color: #b9d3ee;">let</span> ((slot-names (mapcar #'slot-definition-name
415 (class-slots class))))
416 (format t <span style="color: #b3b3b3;">"Slots: ~%~{ ~S~%~}"</span> slot-names)
417 (inspect-loop slot-names instance #'example-inspect))))
418
419 (<span style="color: #b9d3ee;">defun</span> <span style="color: #87cefa;">inspect-loop</span> (slots instance inspector)
420 (format t <span style="color: #b3b3b3;">"Enter slot to inspect or :pop to go up one level: "</span>)
421 (finish-output)
422 (<span style="color: #b9d3ee;">let*</span> ((slot (read))
423 (found-slot (member slot slots)))
424 (<span style="color: #b9d3ee;">cond</span> (found-slot
425 (funcall inspector (slot-value instance slot))
426 (funcall inspector instance))
427 ((eq slot <span style="color: #b0c4de;">:pop</span>) t)
428 (t
429 (format t <span style="color: #b3b3b3;">"~S is invalid. Valid slot names: ~S~%"</span>
430 slot
431 slots)
432 (inspect-loop slots instance inspector)))))
433 </pre>
434
435
436 <h5>Example: Runtime Generated Classes and Methods</h5>
437
438
439
440 <h4><a name="sec16" id="sec16"></a>
441 Intercessory</h4>
442
443 <p class="first">Intercessory MOPs allow the user to customize language behavior by
444 implementing methods which override certain aspects of the language
445 behavior. This class of MOPs are what make MOPs especially
446 powerful. No longer must a problem be restructured to fit the
447 implementation language; the underyling language can be reshaped to
448 fit the task at hand, and obfuscation of the intended structure of the
449 application can be avoided.</p>
450
451 <h5>Example: Lazily Allocated Slots</h5>
452
453
454 <h5>Example: Observer Design Pattern</h5>
455
456 <p>A simple implementation of the observer pattern is under 100 lines,
457 and the user level code requires only a single line of code to make
458 any existing class observable.</p>
459
460 <p>In a language lacking a MOP, implementing the observer pattern
461 requires modifying every accessor of a class to explicitly invoke any
462 observers, and neccesitates the addition of a mixin class to the class
463 heirarchy. The fact that an object can be observed is a meta property
464 of the class, and forcing it to be implemented at the application
465 level dirties the inheritance heirarchy and adds uneccesary meta
466 details to the program.</p>
467
468 <pre class="src">
469 <span style="color: #ff7f24;">;;; </span><span style="color: #ff7f24;">This metaclass adds a slot to instances which use it, and so the
470 </span><span style="color: #ff7f24;">;;; </span><span style="color: #ff7f24;">system is defined in its own package to avoid name conflicts
471 </span>(<span style="color: #b9d3ee;">defpackage</span> <span style="color: #98fb98;">:observer</span>
472 (<span style="color: #b0c4de;">:use</span> <span style="color: #b0c4de;">:cl</span> #+sbcl <span style="color: #b0c4de;">:sb-mop</span>)
473 (<span style="color: #b0c4de;">:export</span> observable register-observer unregister-observer))
474
475 (<span style="color: #b9d3ee;">in-package</span> <span style="color: #b0c4de;">:observer</span>)
476
477 <span style="color: #ff7f24;">;;; </span><span style="color: #ff7f24;">Metaclass
478 </span>(<span style="color: #b9d3ee;">defclass</span> <span style="color: #98fb98;">observable</span> (standard-class)
479 ()
480 (<span style="color: #b0c4de;">:documentation</span> <span style="color: #b3b3b3;">"Metaclass for observable objects"</span>))
481
482 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">compute-slots</span> ((class observable))
483 <span style="color: #b3b3b3;">"Add a slot for storing observers to observable instances"</span>
484 (cons (make-instance 'standard-effective-slot-definition
485 <span style="color: #b0c4de;">:name</span> 'observers
486 <span style="color: #b0c4de;">:initform</span> '(make-hash-table)
487 <span style="color: #b0c4de;">:initfunction</span> #'(<span style="color: #b9d3ee;">lambda</span> () (make-hash-table)))
488 (call-next-method)))
489
490 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">validate-superclass</span> ((class observable)
491 (super standard-class))
492 t)
493
494 (<span style="color: #b9d3ee;">defun</span> <span style="color: #87cefa;">register-observer</span> (instance slot-name key closure)
495 (register-observer-with-class (class-of instance)
496 instance
497 slot-name
498 key
499 closure))
500
501 (<span style="color: #b9d3ee;">defun</span> <span style="color: #87cefa;">unregister-observer</span> (instance slot-name key)
502 (unregister-observer-with-class (class-of instance)
503 instance
504 slot-name
505 key))
506
507 (<span style="color: #b9d3ee;">defun</span> <span style="color: #87cefa;">get-observers</span> (instance slot-name)
508 (get-observers-with-class (class-of instance)
509 instance
510 slot-name))
511
512 (<span style="color: #b9d3ee;">defun</span> <span style="color: #87cefa;">add-observer-table</span> (instance slot-name)
513 (setf (gethash slot-name (slot-value instance
514 'observers))
515 (make-hash-table)))
516
517 (<span style="color: #b9d3ee;">defgeneric</span> <span style="color: #87cefa;">register-observer-with-class</span> (class instance slot-name key closure))
518 (<span style="color: #b9d3ee;">defgeneric</span> <span style="color: #87cefa;">unregister-observer-with-class</span> (class
519 instance
520 slot-name
521 key))
522
523 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">register-observer-with-class</span> ((class observable)
524 instance
525 slot-name
526 key
527 closure)
528 (setf (gethash key
529 (or (gethash slot-name
530 (slot-value instance 'observers))
531 <span style="color: #ff7f24;">;; </span><span style="color: #ff7f24;">Lazily add observer hash tables
532 </span> (add-observer-table instance slot-name)))
533 closure))
534
535 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">unregister-observer-with-class</span> ((class observable)
536 instance
537 slot-name
538 key)
539 (remhash key (gethash slot-name
540 (slot-value instance 'observers))))
541
542 (<span style="color: #b9d3ee;">defmethod</span> <span style="color: #87cefa;">get-observers-with-class</span> ((class observable)
543 instance
544 slot-name)
545 (gethash slot-name (slot-value instance 'observers)))
546
547 (<span style="color: #b9d3ee;">defmethod</span> (<span style="color: #87cefa;">setf slot-value-using-class)</span> <span style="color: #b0c4de;">:before</span> (new-value
548 (class observable)
549 instance
550 slot)
551 (<span style="color: #b9d3ee;">let</span> ((slot-name (slot-definition-name slot)))
552 (<span style="color: #b9d3ee;">if</span> (not (eq 'observers slot-name))
553 (<span style="color: #b9d3ee;">let</span> ((observers
554 (get-observers instance (slot-definition-name slot))))
555 (<span style="color: #b9d3ee;">if</span> observers
556 (maphash #'(<span style="color: #b9d3ee;">lambda</span> (key observer)
557 (funcall observer
558 (<span style="color: #b9d3ee;">if</span> (slot-boundp instance slot-name)
559 (slot-value instance slot-name)
560 nil)
561 new-value))
562 observers))))))
563 </pre>
564
565
566
567
568
569 <h3><a name="sec17" id="sec17"></a>
570 Violation of Encapsulation?</h3>
571
572 <p class="first">A MOP may seem like a violation of encapsulation by revealing some
573 implementation details, but in reality a well designed protocol does
574 not reveal anything which was not already exposed. Implementation
575 decisions affect users, and some of these details do leak through to
576 higher levels (e.g. the memory layout of slots). Implicit in the
577 protocol specification are these implementation details, and the MOP
578 merely makes this limited subset available for customization.</p>
579
580 <p>A MOP makes it possible to customize certain implementation decisions
581 that do not <strong>radically</strong> alter the behavior of the base language. The
582 conceptual vocabulary of the system retains its meaning, and so code
583 written in one dialect can interact with code written in another
584 without knowing that they speak different ones.</p>
585
586
587
588 <h2><a name="sec18" id="sec18"></a>
589 MOP Design Principles</h2>
590
591 <h3><a name="sec19" id="sec19"></a>
592 Layered Protocol</h3>
593
594 <p class="first">A layered protocol design is good for both meta and normal object
595 protocols, and enables a combinatorial explosion of customizations to
596 the protocol.</p>
597
598 <h4><a name="sec20" id="sec20"></a>
599 Top Level <strong>Must</strong> Call Lower Level Methods</h4>
600
601 <p class="first">The top level methods of a layered protocol are required to call
602 certain lower level methods to perform some tasks. This both makes it
603 easier to customize the top level methods (which perform very broad
604 tasks) by providing some pieces of implementation for the programmer,
605 and enables more customization by opening up the replacement of lower
606 level functions as a way to alter a small detail of the high level
607 behavior.</p>
608
609
610 <h4><a name="sec21" id="sec21"></a>
611 Lower Level Methods are Easier to Customize</h4>
612
613 <p class="first">The lower level methods of a MOP are limited in scope and can be
614 implemented easily. Often the desired changes to language behavior are
615 minor, and having methods that perform simple tasks which are often
616 customized reduces the effort required to extend the system.</p>
617
618
619
620 <h3><a name="sec22" id="sec22"></a>
621 Functional Where Possible</h3>
622
623 <p class="first">Functional protocols are preferred for MOPs (and object protocols in
624 general). Functional protocols open up several optimizations for the
625 implementation without burdening the user of the protocol.</p>
626
627 <h4><a name="sec23" id="sec23"></a>
628 Memoization</h4>
629
630 <p class="first">Memoization is the process of saving the results of a function call
631 for future use. This avoids expensive recomputation of values which
632 have not changed (recall that a true function will always return the
633 same result when given the same arguments).</p>
634
635 <p>A functional MOP can be optimized easily by exploiting this property
636 to memoize the return values of calls to expensive operations. A MOP
637 must be be very fast to avoid making programs unusably slow, and
638 memoization is able to give an appreciable speedup in many cases
639 without a significant burden on memory usage.</p>
640
641
642 <h4><a name="sec24" id="sec24"></a>
643 Constant Shared Return Values</h4>
644
645 <p class="first">Disallowing modification of values returned by protocol methods allows
646 the implementation to return large data structures by reference to
647 avoid expensive copying without having to do expensive data integrity
648 checks or copying.</p>
649
650
651
652 <h3><a name="sec25" id="sec25"></a>
653 Procedural Only Where Neccesary</h3>
654
655 <p class="first">Some operations like method invocation are inheretly stateful and so
656 must use a procedural protocol. There is no benefit to be gained from
657 using a functional protocol, and indeed an attempt would result in
658 obtuse code that severely restricted the implementian. Do note that
659 only a very small part of method invocation is stateful (the actual
660 call), and most of it can be implemented functionally (e.g. computing
661 the discriminating function).</p>
662
663
664 <h3><a name="sec26" id="sec26"></a>
665 Real World</h3>
666
667 <h4><a name="sec27" id="sec27"></a>
668 <a href="http://common-lisp.net/project/ucw/">UCW</a> and <a href="http://common-lisp.net/project/bese/arnesi.html">Arnesi</a></h4>
669
670 <p class="first">Arnesi uses the CLOS MOP to implement methods which are transparantly
671 rewritten into continuation passing style. This allows their execution
672 to be suspended at certain points and resumed later. UCW builds on top
673 of this to support a web framework where the statelessness of http is
674 hidden from the user; displaying a page suspends the execution of the
675 current continuation, and resumes it upon submission. The user level
676 code is completely unaware of this.</p>
677
678
679 <h4><a name="sec28" id="sec28"></a>
680 <a href="http://clsql.b9.com">CLSQL</a></h4>
681
682 <p class="first">CLSQL uses the reflective part of the CLOS MOP to map Common Lisp data
683 types into SQL types, and the intercessory protocol for slot
684 allocation to map slots onto database columns or sql expressions (for
685 implementing relational slots).</p>
686
687
688 <h4><a name="sec29" id="sec29"></a>
689 <a href="http://common-lisp.net/project/elephant/">Elephant</a></h4>
690
691 <p class="first">Elephant uses the CLOS MOP to transparantly store any class to disk
692 and handle paging between the disk store and memory efficiently
693 without user intervention.</p>
694
695
696
697
698 <h2><a name="sec30" id="sec30"></a>
699 Sources &amp;amp; Further Reading</h2>
700
701 <h3><a name="sec31" id="sec31"></a>
702 Sources</h3>
703
704 <h4><a name="sec32" id="sec32"></a>
705 The Art of the Metaobject Protocol</h4>
706
707 <h5>Kiczales, Gregor et al. MIT Press 1991</h5>
708
709 <p>Highly recommended reading even if you plan to never implement a MOP
710 or use the CLOS one. The design principles it recommends are quite
711 useful.</p>
712
713
714
715 <h4><a name="sec33" id="sec33"></a>
716 <a href="http://www.lisp.org/mop/contents.html">CLOS MOP Specification</a></h4>
717
718 <p class="first">Specification of the MOP for CLOS defined in <em>The Art of the Metaobject Protocol</em>.</p>
719
720
721 <h4><a name="sec34" id="sec34"></a>
722 <a href="http://citeseer.ist.psu.edu/399658.html">Metaobject Protocols: Why We Want Them and What Else They Can Do</a></h4>
723
724 <p class="first">A short overview of MOP design principles followed by three example
725 metaobject protocols for Scheme.</p>
726
727
728 <h4><a name="sec35" id="sec35"></a>
729 <a href="http://www2.parc.com/csl/groups/sda/projects/oi/towards-talk/transcript.html">Why Are Black Boxes so Hard to Reuse?</a></h4>
730
731 <p class="first">Transcription of a talk on the benefits of open implementations of
732 software. It first discusses several problems that black box software
733 implementations pose, and then presents existing solutions. It shows
734 how the existing solutions are insufficient, and then provides
735 metaobject protocols as a solution to most of the problems.</p>
736
737
738
739 <h3><a name="sec36" id="sec36"></a>
740 Further Reading</h3>
741
742 <h4><a name="sec37" id="sec37"></a>
743 <a href="http://citeseer.ist.psu.edu/chiba95metaobject.html">A Metaobject Protocol for C++</a></h4>
744
745 <p class="first">Example of a purely compile time MOP. It implements the functionality
746 of a code walker and something similar to the Lisp macro system.</p>
747
748
749 <h4><a name="sec38" id="sec38"></a>
750 <a href="http://www.parc.com/csl/groups/sda/publications/papers/Kiczales-TUT95/for-web.pdf">Open Implementations and Metaobject Protocols</a></h4>
751
752 <p class="first">It is a bit long, but it seems to follow a similar structure to AMOP
753 in introducing MOPs and their usefulness. The pages are slides with
754 notes, and so the 331 pages might not actually take that long to read.</p>
755
756
757
758
759 <!-- Page published by Emacs Muse ends here -->
760
761 <p class="cke-buttons">
762 <!-- validating badges, any browser, etc -->
763 <a href="http://validator.w3.org/check/referer"><img
764 src="http://www.w3.org/Icons/valid-xhtml10"
765 alt="Valid XHTML 1.0!" /></a>
766
767 <a href="http://www.anybrowser.org/campaign/"><img
768 src="img/buttons/w3c_ab.png" alt="[ Viewable With Any Browser
769 ]" /></a>
770
771 <a href="http://www.debian.org/"><img
772 src="img/buttons/debian.png" alt="[ Powered by Debian ]" /></a>
773
774 <a href="http://hcoop.net/">
775 <img src="img/buttons/hcoop.png"
776 alt="[ Hosted by HCoop]" />
777 </a>
778
779 <a href="http://www.fsf.org/register_form?referrer=114">
780 <img src="img/buttons/fsf_member.png"
781 alt="[ FSF Associate Member ]" />
782 </a>
783 </p>
784
785 <p class="cke-footer">* jeffcovey becomes too groggy to read the directions and becomes
786 the year's first nasal spray overdose fatality.
787 </p>
788 <p class="cke-timestamp">Last Modified:
789 September 26, 2008</p>
790 </body>
791 </html>